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A numerical model is developed to study the confinement of low-pressure plasmas 
in axially symmetric configurations with arbitrary shaped magnetic surfaces. The 
equations contain the effects of resistivity, plasma inertia, and pressure gradients in the 
surfaces. In this model, which extends the earlier work in which fictitious currents had 
to be introduced to support the magnetic fields, the plasma pressure is taken sufficiently 
small that only electrostatic modes can be excited. The Lax-Wendroff scheme is used 
to advance the plasma density and velocities in time. Applications include demonstration 
that classical expressions for diffusion are valid when there are small plasma flows, and 
study of the propagation of acoustic and geodesic waves in levitrons. 

I. INTRODUCTION 

Following the nonlinear time developement of plasma motion in realistic 
geometries can provide considerable understanding of toroidal confinement. The 
time behavior of most plasma physics experiments is a complex combination of 
different motions, usually complicated by very different time scales, nonlinear 
effects and nontrivial boundary conditions. Numerical calculations can play a 
very important role in the study of phenomena of this kind; they enable a direct 
comparison of the different physical effects, provide a practical means of comparing 
theory with experiment, and quite often suggest realistic simplifications to the 
theory which make it amenable to analysis. 

From a computational point of view, the presence of physical phenomena on 
different time scales makes selecting an appropriate numerical scheme which 
provides suitable accuracy and convergence properties difficult. Typically one 
constructs models from the full set of equations which display effects on some 
particular time scale, and pieces together a more complete physical picture of 
the experiment from these models. Motions on very short time scales (using particle 
codes) and on long time scales (adopting transport equations) have received 

* On loan from Westinghouse Research Laboratories. 

192 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



TOROIDAL PLASMA SIMULATION 193 

considerable attention, and reliable numerical techniques for their study are well 
known in the literature. Description of motions on intermediate time scales can 
also be studied with transport or fluid codes. Several difficulties must be faced; 
realistic descriptions are invariably two (or more) dimensional in nature, the 
choice of model is strongly dependent on the time scale of the phenomena of 
interest, and fluid models are not always easily justified. On the other hand, an 
understanding of motions on the different time scales is important (it may lead 
to modifications in the models appropriate for longer time scales for example), 
and the numerical calculations may give a sensible qualitative description even 
for experimental configurations where the model cannot be rigorously justified 
theoretically. 

The numerical study of confinement on the thermal time scale in toroidal 
devices has received considerable attention in recent years. Winsor, Johnson and 
Dawson [I], using a simple one-fluid magnetohydrodynamic model, devised an 
appropriate method of solution for low-pressure devices and followed the develop- 
ment of an initial state in the minor cross section. They studied the onset of 
rotational buildup [2] and measured plasma diffusion across model circular 
magnetic surfaces. Good agreement was reported with extensive analytical 
solutions [3]. The model was subsequently improved to include finite gyration 
radius effects and Hall terms in Ohm’s law [4]. The development of weak shocks 
was reported and confirmed analytically [5, 61. The effects of viscosity and thermal 
conductivity towards the stabilization of the rotating flows has also been considered 
[7-l 11. More recently the effect of rotational transform on shocked equilibria has 
been investigated [12]. Haines [13] considered toroidal confinement as an initial- 
value problem, ordering the equations to obtain a set of five coupled nonlinear 
time-dependent equations which were solved numerically. 

Two major simplilications are common to these calculations. Most importantly, 
the plasma motion is assumed to be electrostatic so that the magnetic field does 
not change in time. Since this corresponds to ignoring the perturbation of the 
magnetic field in the equation of motion while properly retaining the change in 
the plasma current, the assumption is well justified in low-pressure systems. Indeed, 
for levitrons or model stellarators where the only current in the plasma is associated 
with material pressure, the neglected force associated with the J x B term in 
the momentum equation is of order /3”; in tokamaks where the poloidal field is 
maintained by current in the plasma, it is of order /3~ with E the inverse aspect 
ratio. The other major simplification is that the magnetic field, in which the 
magnetic surfaces have nested, concentric, circular cross sections, is not self- 
consistent and does not contain important physical effects associated with toroidally 
imposed shifts of the surfaces. 

The numerical techniques developed previously [l] take advantage of the different 
nature of the equations in directions parallel and perpendicular to the field lines, 
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and rely heavily on the coincidence of coordinate surfaces and magnetic surfaces, 
In the present calculation this model is extended to apply to a general axisymmetric 
field geometry. This is achieved by performing the calculations in field line 
coordinates, in such a way that the grid points are actually determined to lie on 
magnetic surfaces. The model is applicable for low-pressure configurations where 
the electrostatic assumption can be justified. 

In Section II we describe a simple one-fluid magnetohydrodynamic model 
which contains the effects of inertia, scalar pressure, electrical conductivity, and 
a static magnetic field. In Section III we derive expressions for the geometry used 
in the calculations. The finite-difference scheme is described in Section IV. Section V 
is devoted to a discussion of boundary and initial conditions. Some preliminary 
applications are discussed in Section VI. 

II. PHYSICAL MODEL 

We consider a simple, scalar pressure fluid described by the equations 

and 

(apjat) + v * pv = 0, (1) 

p((h@t) + v . Vv) = J x B - t&Q, (2) 

V@=vxB--J, (3) 

V.J=O. (4) 

Here Z)th = [k(Ti/mi + 7’,/m,)]‘l” is the sound speed. Because of interest in low- 
pressure phenomena, we ignore motion on the time scale associated with AlfvCn 
waves so that Maxwell’s equations reduce to Eq. (4); this enables us to introduce 
a scalar potential CD to represent the electric field occurring in Ohm’s law (Eq. (3)). 
We ignore finite-gyration-radius effects and the Hall terms in Ohm’s law, keeping 
only a scalar electrical resistivity 7. We assume that thermal conductivity is high 
and that the temperature is constant in both space and time. A discussion of how 
this constraint could be relaxed was given in [l 11. The model thus contains many 
essential features, including acoustic wave phenomena, Pfirsch-Schltiter enhance- 
ment of diffusion [14], and inertial flows. 

In systems with closed toroidal magnetic surfaces this set of fluid equations 
possesses certain constraints. In particular Eqs. (3) and (4), with the conditions 
that @ and J,, be single-valued on a magnetic surface, lead to [l] 

4 J.BdZ/j V?t”l = 0, (5) 
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and 

P J. VYdZ/j VY1 = 0, (6) 

where dZ is an element of surface area and Y is a surface label. 
Because of the symmetry it is convenient to decompose the field into poloidal 

and toroidal components: 

where 
B = J-3, + b , (7) 

B, = “4 x VYj257, (8) 

BT = g(Y) “4. (9) 

Here 4 is the angle around the axis of symmetry and Y is the poloidal flux contained 
inside the magnetic surface it labels. Clearly V+ = em/X with X = R - rcos 0 the 
distance out from the axis of symmetry (see Fig. 1). The function g is assumed to 

FIG. 1. Computational grid for model levitron of Eq. (11) with B. = 3.3 kG, Z, = 1.0, 
Z, = 0.25, B, = -2.5 kG, R = 30 cm, r,, = 10 cm, a = 5 cm. The dots represent the main 
grid for p and v and the crosses label the main grid for @ and J. Note that the mesh is constructed 
from surfaces of constant Y and 0 which do not coincide with the usually adopted cylindrical 
coordinates Y and 0. 

depend on Y alone, so that any currents associated with this imposed field lie 
on plasma surfaces. Thus, our field satisfies the equilibrium conditions for the 
plasma, and the model is valid only for electrostatic modes which do not provide 
serious field distortion. 
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In the past it has been expedient to work with an idealized model where g = RR, 
and 

Y = 2nBo /‘f(r) dr, (10) 
0 

with B. a constant. Thus the magnetic surfaces labeled by Y have concentric 
circular cross sections and the poloidal field points only in the 8 direction. Clearly, 
this magnetic field satisfies Maxwell’s equations and the equilibrium condition 
only to the lowest order in an inverse aspect ratio expansion. 

In this paper we adopt a model field for a levitron, generalized from that adopted 
by Kent and Stringer [15], which is accurate to first order in an inverse aspect 
ratio expansion. We again choose g(Y) = RB, = I, , a constant that measures 
the total current along the axis of symmetry inside the plasma region. We choose 
as our flux surfaces: 

Y = 2z-R&{ln(r/a) - (cos 0/2R)[(r - a)(2 + ln(r/8R) - (2B,R/I,)) 

+ a W/41 + *-1, (11) 
with 1, the current carried by an inner ring of minor radius a and major radius R’ 
and B, the magnitude of a uniform vertical field. We find from Eq. (8) that with 

B, = BA -I- &es , (12) 
B,. = -(1,/2Rr) sin O[(r - a)(2 + ln(r/8R) - (2B,R/I,)) + a ln(r/a) + ***I, 

and 

Be = (IJr)[l - (r/2R) cos e(l + ln(r/8R) - (2B,R/I,)) + ***I. 

Obviously one can determine Y(r, 6) numerically for any prescribed equilibrium 
distributions of p(#) and g(#) by solving the well-known equation for the stream 
function 

= 4$f4y) r &“(y> 
--x27F-’ dY (13) 

III. COORDINATE SYSTEM 

In this section we develop the geometry of the field line coordinates used in the 
numerical calculations. Our toroidal configuration is illustrated in Fig. 1. To 
construct an orthogonal Y, 0, 4 system we introduce a function 0 such that [16] 

$BD2 V@ = “4 x WY (14) 
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with the Jacobian f(r, 6) chosen so that 0 increases by 2?r as 0 is changed by 237. 
For most applications it is necessary to solve Eq. (14) numerically in order to 
determine r(Y, 0) and e(Y, 0). For the usual idealized model [I] we obtain 

0 = 8, $(r, 0) = rW%S. 

For the levitron model of Eq. (12), we find 

(15) 

0 = 19 - (sin 8/2R)[r(l + ln(r/SR) - (2B,R/Z,)) 
- a In r (2 + ln(a/8R) - (2&R/Z,)) + .**I, 

$ = (r2/ZS){l + (cos 8/2R)[2r(l + In(r/8R) - (2Z3,R/Z3)) 
- a In r (2 + ln(a/8R) - (2&R/Z,)) + *.o]}. 

(16) 

In this coordinate system the arc length is 

d12 = (~T~XB~)-~ dY2 + ($BD)2 d02 + X2 d+ 

so that the scale factors are given by 

h, = (~?TXB~)-~, h, = $4, h, = X. (17) 

Differential operators such as gradient, divergence, and curl are thus easily 
evaluated. 

We construct a uniform equally spaced grid in the (Y, 0) plane with coordinates 
(Yi , Oj) where 

Yi = iYmax/N, O<i<N, 

Oj = 2rj/kf, O<j<M. 

A straightforward iteration scheme to solve Eqs. (10) and (15) or (11) and (16) 
for r (Yi , Oj) and B(Yi , Oj) so as to evaluate X, B, , and the hk’s, has been found 
to converge satisfactorily. 

The properties of the physical equations in the directions parallel and perpen- 
dicular to the magnetic field are considerably different. For this reason it is 
convenient to separate these equations into components in the VY, B x VY, and, 
B directions. Thus we introduce the unit vectors e,, e, and e, = eb x e, , and 
decompose vectors in terms of them; for example 

v = vYeg + uses + vbeb . (18) 

These are related to the base vectors ey , e, , e, and thus e, , e, , em through 

ey = ey, e@ = cBdB) e8 + tBD/B) eb , % = 4&/B) es 4- (&/B)eb . 

581/17/2-7 
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IV. NUMERICAL METHODS AND FINITE-DIFFERENCE EQUATIONS 

Before considering the finite-difference equations we briefly summarize the 
solution procedure [l]. First J, is obtained from Eq. (2), then Jb is determined 
from Eq. (4) (the constant of integration is adjusted so that Eq. (5) is satisfied). 
The parallel component of Ohm’s law, Eq. (3), is used to obtain that part of the 
electrostatic potential & which varies on a magnetic surface. The surface constant 
(@) is advanced in time using the component of Ohm’s law normal to a magnetic 
surface, the perpendicular component of momentum conservation lying in the 
surface, and the constraint for conservation of charge, Eq. (6). With the total 
potential @ = (Q(Y)) + &(Y, O), the perpendicular components of Ohm’s 
law give v, . Finally p and vb are advanced in time using Eqs. (1) and (2). 

From a numerical point of view the equations for the evaluation of the physical 
quantities fall into two categories: essentially time-independent equations from 
which J, vI and ~8 are evaluated, and time-dependent equations used to advance p, 
ub, and (@). In the first type we represent differential operators as closely as 
possible by space-centered differences; we use the Lax-Wendroff two-step numerical 
scheme [17] for the remaining equations. 

At a given time step in the numerical calculation the various physical quantities 
are staggered over the mesh as illustrated in Fig. 1. This layout greatly helps the 
space and time centering of the various finite-difference equations. Thus the main 
grid (at integral multiples of d t where the Lax-Wendroff scheme gives second- 
order accuracy) for p and v is represented by the dots while the main grid for @ 
and J is labeled by the crosses. We commence with initial values of p, zlb and <CD> 
on the main grid. With approximate values for vI (obtained from the previous step 
during the calculation under the assumption that &,/at is small) the inertial terms 
are evaluated, again on the main grid. Then J and 6 (and hence @) are evaluated 
on the auxiliary grid at the time t, and improved values of vl. obtained from 
Ohm’s law. This sequence of steps is iterated until consistent values of v, are 
obtained. In practice it is found that only one or two iterations are usually sufficient. 
The first step of the Lax-Wendroff method is then executed to give approximate 
values of p, vb and (CD) on the auxiliary grid, appropriate to time t + At/Z!. The 
values of @, J and v, on the auxiliary grid are then calculated in an identical fashion 
to that of the first step, and p, vb and <@) advanced to time t + At. Updating CD, 
J and vI on the main grid completes the advancement. 

To improve the convergence of the iteration for v, , one can take advantage 
of the fact that part of v, (depending on (@)) is known at the current time. 
Thus we take 
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as a first approximation to U, at time n At, where 

v, = (I/Bh,)(d(@)/dY). 

The values of J, are evaluated from Eq. (2). We find that 

JGij = -(&m&w + P@bm-%(~ny,J W~J 

199 

(20) 

In these equations the vector a represents that part of the inertial term resulting 
from the curvature of the coordinate system. Thus 

at, = %‘[B,(%(a&,ay) - h’(ah,/a@))/h,B + B,u,(ah3/a~/h,B]/h, 
+ v,G’W@)lh,h, . (23) 

The centered difference and averaging operators are defined at the point Y$ , Oj 
and time n to be 

w3 = @X1 j - d-“-l ,>/h, OK 

&(p3 = (pYj+l - p;dh, A@, (24) 

p&m = (Pri+l + $d2. 

These finite-difference equations can be applied equally well to any internal grid 
point; in the first step of the Lax-Wendroff scheme they are used to find values of 
J, on the auxiliary grid, while in the second step they give J, on the main grid. 
In Eqs. (21) and (22) the dot over a quantity refers to a partial time derivative, 
which is approximated by its value at the time (n - 1) At. 

Integrating Eq. (4) over a magnetic surface we find 

Jbni j-1 = J; ;ml - BCi”/h,h,B, , (25) 



200 GRIMM AND JOHNSON 

where J~~-I is evaluated from the centered-difference equation 

thMB)a d&Js + &Jt,*Ej-1 = V&l% j-&Js + B,J,*):i-a 

- bMMJ,Xi-21, (26) 

and Cjn is a constant of integration to be determined from the constraint, Eq. (5); 
using the trapezoidal rule, we find 

Gn = c (Jb*:$W,)/~ V$W~Wh2). (27) 
j j 

Here the summation refers to only those points on the surface corresponding to 
the particular grid on which Ja is being updated. 

In an identical manner we integrate the parallel component of Ohm’s law, 
Eq. (3); thus 

C&‘d-1 = &‘j-3 - 7 A0 ps[(h2BJt,/BD):i-2]. (28) 

The calculations necessary to evaluate the constant of integration in this step, 
(@)r , have already been done (see Eq. (34)). With the total electrostatic potential 
determined, the perpendicular components of Ohm’s law give 

and 

v$, = &t@WB + rl~~o(J$,)lB. (30) 

The finite-difference equations for advancing p and vb are quite straightforward: 

and 

p;+” = up; + (1 - u) P&;j+1’2) + (k At/h,h2h3)(S,[(h2h,p)~~‘-1’2] 

+ &dVhp@rv, + 4~d/B)~~“-““l), (31) 

v 1E?” = av,y* + (1 - a) /&,:;1/2) bv 

+ k A~(-v~~B,S,(~;+““-“~)/B/..L~(~~+~’~) 

- ,.h&“~;k-1’2) 8&b;;k-1’2) 

- pO[((BTv, + B,Vb)/B);~k-f’2] 8&,;;“jfrc-11a) 

- p@(&,;;k-1’2)). (32) 
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The component a, is defined in Eq. (23). In the first step of the Lax-Wendroff 
scheme, these equations refer to the auxiliary grid and we use u = 1, k = l/2. 
Values on the main grid (one complete time step ahead) are then obtained in the 
next step with u = 0, k = 1. 

The calculation of d(@)/dY is a little more involved. Using Eq. (2) to obtain 
J, and inserting into Eq. (6) as in [l], we obtain an equation for a2@plaY at. Since 
a(d(@)/d!P)/at is constant on the surfaces and can be taken outside the integral 
sign, this can be used to advance d(@)/W in the form 

Here the summation applies only to points on the auxiliary grid for half integral 
values of k and to those on the main grid otherwise. The partial derivatives JY 
and d are again approximated from the previous time step. With Eq. (33) we 
advance the gradient of (@) normal to the magnetic surface using 

(d(@)/dY);‘” = o(d(@)/dY); + (1 - cr)(d(@)/dY);+*‘” 

+ k dt[a(d(@)/dY)/at]. (34) 

It is straightforward and easy to change this scheme from a Lax-Wendroff method 
to other ones. As previously noted, in the time advancement of Eqs. (31)-(34), 
the Lax-Wendroff scheme is obtained if we set 0 = 1, k = l/2 for the first step 
and g = 0, k = 1 for the second. The ordinary leap-frog scheme is achieved by 
setting u = 1, k = 1. Other weightings could be equally well constructed. 

A simplified linear stability analysis of this scheme has been done [I81 using 
the idealized model of Eq. (10) in a limit where coupling between the different 
magnetic surfaces can be neglected. It supports the belief that these finite-difference 
equations utilizing the Lax-Wendroff scheme will provide a consistent and con- 
vergent representation of the physical model even for complicated geometries 
provided the Courant-Friedrichs-Lewy condition, that 

(I B,u, + BTQ I + B,~,,)(~~/h,B A@) < 1 (35) 

at every mesh point, is satisfied. This appears to be born out in practice. 
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V. BOUNDARY AND INITIAL CONDITIONS 

In order to complete the specification of the problem we must prescribe boundary 
conditions for most of the variables at the plasma boundaries as well as initial 
values for some of the variables. 

We assume that the outer surface is perfectly conducting so that &,, and thus 
vg , is zero at the boundary. Since plasma is transported to this surface by outward 
diffusion and convection, fixing the density on the boundary acts as a plasma sink 
and prevents buildup inside the wall. This model provides a crude representation 
of limiter behavior. The components of v in this surface may be allowed to free 
stream, or can be fixed throughout the run. In simulations of a levitron the electro- 
static potential @ is set equal to zero on the outside boundary and allowed to vary 
with time on the ring according to Eq. (34). 

The initial conditions pose more of a problem. In principle, initial conditions 
are only required for those equations which are used explicitly to advance quantities 
in time. Thus we require initial distributions for p, ob , and d(@)/dY. Values of 
the other variables, J, @, vI are then obtained at the initial time from Eqs. (21)-(30). 

Considered as a pure initial-value problem, there is some interest in following the 
time development from any given initial condition. On the other hand, the presence 
of large-amplitude oscillations may confuse the interpretation of the results and 
the accurate measurement of growth rates. Ideally one would like to be able to 
set up a near equilibrium solution with these amplitudes set to zero; individual 
physical effects can then be studied by perturbing the initial configuration in a well- 
prescribed manner. Short of finding an approximate analytical equilibrium [3], 
the best one can hope to do is to construct initial conditions numerically which are 
near steady state in the sense that during the first time step the force terms are 
small, The most convenient technique for achieving this involves iterating through 
the equations, systematically readjusting the variation of p and vb over the magnetic 
surfaces, until the initial values of ap/& and o”v,/& are forced to zero. In this way 
we can hope to achieve initial conditions relatively free from acoustic and entropy 
modes. On the other hand, the complicated nature of the equation used to advance 
(@) with time does not fit easily into this scheme, so that in practice the initial 
conditions always generate some geodesic oscillations [19]. 

Under these circumstances the most useful way of specifying the initial conditions 
is to prescribe average values for the density, parallel velocity and d(@)/dY on 
each surface. Appropriate equations for constructing a near steady state are easily 
derived. For the jth step in the iteration procedure we find by setting a/at = 0 in 
the parallel component of the momentum equation, 

p’i’ = L 0 v& s 0 p +l++l) . vvCi-l)], + & + ,-W = p* + p* (36) 9 
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Specifying the total mass on a surface, we find 

where p&P) is the prescribed constant value of density on the surface. Similarly, 
using particle conservation, we set 

BT ,(j’ = - (-) 21 @ a 
b 

(j-1) _ 

B, ' [S 
o ~(h,h,p"-"a~-")dO]/h,h,pB, - @/(hlh3pB,). 

(38) 

Here Vbj) is determined by specifying the total toroidal momentum 

g, = $b(‘)@rub* - BJI(,~-~)) - ,q,v,] h,h, d@/BB, 
2714 Brh,X da/B, (39) 

These equations can be iterated numerically quite easily by solving alternative 
steps on the main and auxiliary grids and evaluating the various integrals with the 
trapezoidal rule. In practice the iteration is found to converge after only a few 
steps in most applications. 

VI. APPLICATIONS 

The real value of a code of this nature is that it can be used for a variety of 
different numerical experiments. Here we concentrate on several aspects related 
to wave propagation and the nature of near steady-state flows in a levitron. 

Measurement of the frequencies of characteristic oscillations in a confinement 
system is of considerable interest experimentally, especially as a diagnostic tool. 
Some analytic results have been obtained for low-pressure, static magnetic field 
toroidal systems as considered here. First, an eigenvalue equation whose solutions 
represent the normal modes of linear oscillation for a nondissipative system was 
obtained for a purely static equilibrium in a general axisymmetric confining 
magnetic field [ 191. For a large aspect ratio device with concentric circular magnetic 
surfaces, the normal modes are quite easily shown to consist of pure sin 0 or cos 6 
oscillations on a magnetic surface. More extensive analytic calculations including 
nonideal effects such as plasma inertia, resistivity and finite heat conduction have 
been carried out on this model [3]. 

One particularly useful feature of these analytic results arises from the fact that 
in the simple model oscillations at the geodesic frequency are driven only by density 
perturbations varying as sin 0, while the cos 0 normal modes are propagated 
along the magnetic surfaces at the reduced sound speed (the acoustic velocity 
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multiplied by the ratio of the poloidal to total magnetic field strengths). This 
provides a convenient check on the accuracy of the code; by perturbing the density 
on a magnetic surface according to 

AK 0) = pO(~)[l + 01 sin(@ + S)], 

one should be able to observe oscillations in the density at the geodesic frequency 
if 6 = 0 and at the acoustic frequency if 6 = 7712. For intermediate values of 6 
a more complicated mode coupling results. With 6 = 77/4, this coupling is some- 
what simplified, with acoustic oscillations being observable in the density at 0 = 0 
and geodesic oscillations at 0 = n/2. 

Typical results obtained with 01 = 0.01 and 6 = 7r/4 are shown in Tables I 
and IT. Here we use the model of Eq. (11) with parameters appropriate to a large 
aspect ratio device: major radius R = 100 cm, plasma radius r0 = 5 cm and ring 
radius a = 1 cm, B,, = 12.5 kG, with axial current 1, = 25, ring current 1, = 0.01, 
and vertical field B, = 0. We take T = 25 eV and assume classical resistivity. The 
initial conditions have zero flows and a parabolic density profile pO(Y), vanishing 
both at r = a and r = r. . We construct a grid with N = 16, M = 16 and use as 
time step dt = 0.2psec. In Tables I and II, we compare the computed acoustic 
and geodesic frequencies evaluated in a variety of ways with their analytic values, 
as given by the normal mode equation [19] on several different magnetic surfaces. 
One can see from the data that the code simulates the linear phase of the natural 

TABLE I 

Acoustic Frequency” 

Surface 
radius (cm) 

1.33 
1.61 
1.95 
2.36 
2.85 
3.44 

Computed 
frequency (kHz) 

PC@ = 0) 4(0 = n/2) 

24.3 24.3 
16.3 16.3 
10.8 10.9 
7.41 7.34 
4.90 4.95 
3.65 3.39 

Analytic 
frequency (kHz) 

24.2 
16.4 
11.1 
7.49 
5.07 
3.43 

o Comparison of the computed acoustic frequencies and the 
corresponding analytic expression on several magnetic surfaces 
for a near circular small aspect ratio configuration. The computa- 
tional results were obtained by following the time dependence of the 
density at 0 = 0, and the parallel component of the fluid velocity 
at 0 = a/2. 
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TABLE II 
Geodesic Frequency” 

Surface 
radius (cm) 

<u> 

Computed Analytic 
frequency (kHz) frequency (kHz) 

<q> p(0 = 9/2) Ub(Q = 0) 

1.33 28.6 28.6 28.6 28.6 28.7 
1.61 22.2 22.2 22.4 22.2 22.4 
1.95 18.8 18.7 18.9 19.0 18.9 
2.36 16.9 17.2 16.9 17.2 17.1 
2.85 16.2 16.1 16.5 16.6 16.1 
3.44 15.7 16.8 16.6 16.0 15.6 

Q Computed and analytic results for the geodesic frequency evaluated on several 
different magnetic surfaces as in Table I. The computed results were obtained from the 
time variation of the surface average of uo , the surface average of u+ , the density at 
0 = 71/2 and the parallel component of velocity at 0 = 0. 

oscillations of the system in a quite satisfactory manner. We illustrate in Fig. 2 
the time evolution of the parallel velocity component ZJ~ at 0 = 7~/4 on a surface 
near the inside of the plasma column (Y = 1.33 cm). In this near circular geometry 
it can be well interpreted in terms of a simple beat pattern between two standing 
waves of equal strengths oscillating at the geodesic and acoustic frequencies, 
respectively. Over a longer period of time, however, this simple description is 
complicated by the buildup of the rotational instability [3] which couples the sur- 
faces and the concomitant damping of the geodesic oscillations. 

O’O’ I 

, 1 I 
0 100 200 300 400 

TIME (@EC) 

FIG. 2. Time evolution of the parallel velocity component vb on an inner surface r = 1.33 cm 
at 0 = r/4 in a large aspect ratio levitron with a nearly circular cross section; B. = 12.5 kG, 
Z, = 25.0, Z, = 0.01, Z3, = 0.0, R = 100 cm, r,, = 5 cm, a = 1 cm. The beat pattern agrees 
well with the interaction of two standing waves of approximately equal strengths oscillating 
at the geodesic and acoustic frequencies, as determined in Tables I and II. 
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Next, we consider a system with a noncircular cross section typical of a 
laboratory spherator or levitron; we set B, = 3.3 kG, Z, = 1.0, Z, = 0.25, 
B,= -2.5kG, R=30cm, r,=IOcm, a=5cm, T=25eV, and T=ten 
times classical resistivity. We use a grid with N = 18 and M = 40 and choose 
dt = 0.1 p set to satisfy the Courant-Friedrichs-Lewy stability criterion. A plot 
of typical magnetic surfaces for these parameters is shown in Fig. 1. We again 
assume an initial parabolic density profile in V, iterating as described in Section V 
to obtain an initial state that is nearly free from acoustic waves. In Figs. 3-5 
we follow the time evolution of p(@ = 0), I,+,(@ = r/4), and the mean surface 
value of vg = (BTvs + B,u,)/B on a surface near the center of the discharge. At 
early times these quantities show the presence of residual geodesic oscillations, 
which damp out as the rotational buildup occurs. The density evolution is 
controlled by resistive diffusion; evaluating the net plasma flow across a surface 
numerically we find excellent agreement (to three significant figures throughout 
the time of the simulation) with the analytic steady-state expression for Plirsch- 
Schliiter diffusion in arbitrary geometries [14]. In Fig. 6 we show the flow patterns 
that develop in the system as the plasma moves along the field lines to compensate 

0.90 I_ 
0 100 200 300 400 500 

TIME (/aed 

FIG. 3. Time evolution of the density on an inner surface Y % 6 cm at 0 = 0 in the con- 
figuration of Fig. 1. The oscillations occur at the geodesic frequency. The major feature is 
resistive decay. 

-6001 I I I -I 
0 100 200 300 400 500 

TIME (,usec) 

FIG. 4. Time evolution of the parallel velocity component ub at 0 = m/4 in the configuration 
of Fig. 3. As in Fig. 2 the beat pattern associated with the interaction of the geodesic and acoustic 
waves is evident at early times. 
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FIG. 5. Time evolution of the mean surface value of vo = (&us + B&,)/B in the configura- 
tion of Fig. 3. 

for the drifts induced by field line curvature. Comparison with Fig. 6 of [3] shows 
that the hard core in a levitron introduces considerable complication. 

To summarize, we have developed a fluid simulation that can follow the develop- 
ment of a plasma in a realistically shaped axisymmetric configuration such as a 
levitron for times of experimental interest. It is useful for studying wave propagation 
in a plasma, a subject that may provide new diagnostic techniques, and is useful 
for understanding plasma heating. We have used the code to study plasma diffusion 

FIG. 6. Flow pattern that develops in the configuration of Fig. 1 as the plasma moves along 
the field lines to compensate for the drifts induced by field line curvature. The arrows indicate 
the projection of the flow onto a constant 4 surface. The magnitude of the flow is represented 
by the length of the lines. Note that the plasma tends to flow outward in the center of the plasma 
and to return near the conducting wall and the inner ring. The major component of the flow is 
along the field lines. 



208 GRIMM AND JOHNSON 

in a realistic configuration over a long period of time and have shown that it is 
in good agreement with classical predictions (which are based on the asssumption 
of a static plasma) even when the magnitude of the plasma flow in the surface 
has built up to several percent of the sound speed. The model also provides a way 
of investigating the buildup of plasma flows. 
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